Answer:
See explanation.
Explanation:
If each runner was holding the pole, the runner in the water side of the pole would probably be behind the other runner. Since running in knee deep is hard and makes you slower, the pole would be slanted.
Answer:
a) Calcule a frequência em RPM
= 0.6 RPM
b) a velocidade escalar do carro em m/s.
= 20m/s
Explanation:
a) Calcule a frequência em RPM
A fórmula para calcular a frequência é: 1/T
onde T= Tempo (seconds)
T = 100s
A frequência = 1/100s
A frequência = 0.01Hz
em RPM
A fórmula para calcular a frequência em RPM =
1 Hz = 60RPM
0.01Hz =
A frequência em RPM = 0.01Hz × 60
= 0.6 RPM
b) a velocidade escalar do carro em m/s.
A fórmula para calcular a velocidade escalar = diâmetro ou distância (m) ÷ tempo (s)
Diâmetro ou Distância = 2.0km
Converter 2.0km para m
1 km = 1000m
2km =
2 km × 1000m
= 2000m
A velocidade escalar = 2000m ÷ 100s
A velocidade escalar = 20m/s
Answer:
a) Frequency in RPM
= 0.6 RPM
b) Scalar Velocity
= 20m/s
Explanation:
a) Frequently in RPM
Formula : 1/T
Where T= Time (seconds)
T = 100s
= 1/100s
= 0.01Hz
Frequency in RPM =
1 Hz = 60RPM
0.01Hz = 0.01Hz × 60
= 0.6 RPM
b) Scalar velocity
The formula = Diameter or Distance ÷ Time
Diameter or Distance = 2.0km
Convert 2.0km to m
1 km = 1000m
2km =
2 km × 1000m
= 2000m
Scalar Velocity = 2000m ÷ 100s
Scalar Velocity = 20m/s
The intensity of a light in a surface follows the inverse square law formula which can be mathematically expressed as,
I = k/d²
where I is intensity, d is distance, and k is the proportionality constant. For us to increase the intensity, we should lower the distance from the source to the surface.
Answer:
r = 4.21 10⁷ m
Explanation:
Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining
T² = (
) r³ (1)
in this case the period of the season is
T₁ = 93 min (60 s / 1 min) = 5580 s
r₁ = 410 + 6370 = 6780 km
r₁ = 6.780 10⁶ m
for the satellite
T₂ = 24 h (3600 s / 1h) = 86 400 s
if we substitute in equation 1
T² = K r³
K = T₁²/r₁³
K =
K = 9.99 10⁻¹⁴ s² / m³
we can replace the satellite values
r³ = T² / K
r³ = 86400² / 9.99 10⁻¹⁴
r = ∛(7.4724 10²²)
r = 4.21 10⁷ m
this distance is from the center of the earth
Since his line of sight 63 degrees makes with the tip of the building
Tan63° = height of building / Horizontal distance
tan63° = Height / 50
50tan63° = Height
Height = 50tan63°
Height ≈ 50*1.9626
Height ≈ 98.13 m
Height of the building is ≈ 98.13 m. Mind you in solving for this height we have neglected the height of Daniel.
The height of building actually should be 98.13 m plus the height of Daniel. Since the 63° was measured from his eye level.