Answer:
a. 8.33 x 10 ⁻⁶ Pa
b. 8.19 x 10 ⁻¹¹ atm
c. 1.65 x 10 ⁻¹⁰ atm
d. 2.778 x 10 ⁻¹⁴ kg / m²
Explanation:
Given:
a.
I = 2500 W / m² , us = 3.0 x 10 ⁸ m /s
P rad = I / us
P rad = 2500 W / m² / 3.0 x 10 ⁸ m/s
P rad = 8.33 x 10 ⁻⁶ Pa
b.
P rad = 8.33 x 10 ⁻⁶ Pa *[ 9.8 x 10 ⁻⁶ atm / 1 Pa ]
P rad = 8.19 x 10 ⁻¹¹ atm
c.
P rad = 2 * I / us = ( 2 * 2500 w / m²) / [ 3.0 x 10 ⁸ m /s ]
P rad = 1.67 x 10 ⁻⁵ Pa
P₁ = 1.013 x 10 ⁵ Pa /atm
P rad = 1.67 x 10 ⁻⁵ Pa / 1.013 x 10 ⁵ Pa /atm = 1.65 x 10 ⁻¹⁰ atm
d.
P rad = I / us
ΔP / Δt = I / C² = [ 2500 w / m² ] / ( 3.0 x 10 ⁸ m/s)²
ΔP / Δt = 2.778 x 10 ⁻¹⁴ kg / m²
Answer:
31.1 N
Explanation:
m = mass attached to string = 0.50 kg
r = radius of the vertical circle = 2.0 m
v = speed of the mass at the highest point = 12 m/s
T = force of the string on the mass attached.
At the highest point, force equation is given as

Inserting the values

T = 31.1 N
Answer:

Explanation:
The intensity of a star noticed at a certain distance is inversely proportional to the square of distance. Then:

The intensity of the Sun in Jupiter relative to Earth is:



<h2>
Option C is the correct answer.</h2>
Explanation:
We need to find how many calories is 1 BTU.
Given
1 BTU = 1054 J
1 calorie = 4.186 J
So we have
1 BTU = 4.186 x 251.79 J
1 BTU =251.79 calorie
1 BTU = 252 calorie.
Option C is the correct answer.
Answer:
Explanation:
The specific heat of gold is 129 J/kgC
It's melting point is 1336 K
It's Heat of fusion is 63000 J/kg
Assuming that the mixture will be solid, the thermal energy to solidify the gold has to be less than that needed to raise the solid gold to the melting point. So,
The first is E1 = 63000 J/kg x 1.5 = 94500 J
the second is E2 = 129 J/kgC x 2 kg x (1336–1000)K = 86688 J
Therefore, all solid is not correct. You will have a mixture of solid and liquid.
For more detail, the difference between E1 and E2 is 7812 J, and that will melt
7812/63000 = 0.124 kg of the solid gold