Answer:
The angular speed after 6s is
.
Explanation:
The equation

relates the moment of inertia
of a rigid body, and its angular acceleration
, with the force applied
at a distance
from the axis of rotation.
In our case, the force applied is
, at a distance
, to a ring with the moment of inertia of
; therefore, the angular acceleration is



Therefore, the angular speed
which is

after 6 seconds is


Molecules in a gas move faster than in a liquid.
hope it helps.
•wind
•snow
•high tide/low tide
•thunder/lightning storms
Answer:
(a) v = 15m/a
(b) No they won't feast because the rock can only rise to a height of 11.5m which is less than 15m.
Explanation:
Please see the attachment below for film solution.
Answer:
The gravitational potential energy of a system is -3/2 (GmE)(m)/RE
Explanation:
Given
mE = Mass of Earth
RE = Radius of Earth
G = Gravitational Constant
Let p = The mass density of the earth is
p = M/(4/3πRE³)
p = 3M/4πRE³
Taking for instance,a very thin spherical shell in the earth;
Let r = radius
dr = thickness
Its volume is given by;
dV = 4πr²dr
Since mass = density* volume;
It's mass would be
dm = p * 4πr²dr
The gravitational potential at the center due would equal;
dV = -Gdm/r
Substitute (p * 4πr²dr) for dm
dV = -G(p * 4πr²dr)/r
dV = -G(p * 4πrdr)
The gravitational potential at the center of the earth would equal;
V = ∫dV
V = ∫ -G(p * 4πrdr) {RE,0}
V = -4πGp∫rdr {RE,0}
V = -4πGp (r²/2) {RE,0}
V = -4πGp{RE²/2)
V = -4Gπ * 3M/4πRE³ * RE²/2
V = -3/2 GmE/RE
The gravitational potential energy of the system of the earth and the brick at the center equals
U = Vm
U = -3/2 GmE/RE * m
U = -3/2 (GmE)(m)/RE