answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex73 [517]
2 years ago
12

A bicycle rider accelerates from rest up to full speed on a flat, straight road. The frictional force between the road and the t

ires pushing her forward is f1. The air drag (and other frictional forces) pushing back is f2. What relationship would f1 and f2 have in the first few seconds of the ride?
Physics
2 answers:
Sergio [31]2 years ago
8 0

Answer:

f_1 > f_2

Explanation:

Frictional force due to road is pushing the cycle in forward direction

so it is given as f1

also the air drag is always in opposite direction of motion so it is given as f2

so here net force on the bicycle is given as

F_{net} = f_1 - f_2

now initially the speed of cycle is increasing with time

so here we can say that net force on the cycle must be positive in direction

so we have

f_1 - f_2 > 0

so we have

f_1 > f_2

Effectus [21]2 years ago
8 0

Answer:

f_1>f_2

Explanation:

The bicycle is able to move forward due to the frictional force between the Tyre of the bicycle and the road. The air drag and other frictional forces act in the opposite direction of motion. The net force is:  

F_{net}=f_1-f_2 is non-zero due to which the bicycle is able to accelerate forward. Therefore, the frictional force between the Tyre and the road must be greater than the air drag.

Later on, as the bicylce attains full constant speed, the two forces would be equal.

You might be interested in
1. Do alto de uma plataforma com 15m de altura, é lançado horizontalmente um projéctil. Pretende-se atingir um alvo localizado n
sveta [45]

Answer:

(a). The initial velocity is 28.58m/s

(b). The speed when touching the ground is 33.3m/s.

Explanation:

The equations governing the position of the projectile are

(1).\: x =v_0t

(2).\: y= 15m-\dfrac{1}{2}gt^2

where v_0 is the initial velocity.

(a).

When the projectile hits the 50m mark, y=0; therefore,

0=15-\dfrac{1}{2}gt^2

solving for t we get:

t= 1.75s.

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

50m = v_0(1.75s)

which gives

\boxed{v_0 = 28.58m/s.}

(b).

The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

v_x = 28.58m/s.

the vertical component of the velocity is

v_y = gt \\v_y = (9.8m/s^2)(1.75s)\\\\{v_y = 17.15m/s.

which gives a speed v of

v = \sqrt{v_x^2+v_y^2}

\boxed{v =33.3m/s.}

4 0
2 years ago
Your friend says, “chemical changes are caused by an input in energy. In physical changes, there is no transfer of energy” is yo
nalin [4]

Answer:

Ok, let's suppose the simplest of the physical changes:

We have an object that is not moving (so it is not accelerated)

and there is change, now the object moves.

Because there was a change, means that there was an acceleration, and by the second Newton's law.

Force equals mass times acceleration:

F = m*a

There must be a force.

So suppose that you pushed the object, then some energy that you had, you transferred it to the object, that now is moving and now has kinetic energy.

Now, is kinda true that in a closed system the total energy is always constant, but it depends on what is our system.

So if we think in our system as you and the object, then in the whole system the energy does not change because the energy that you lost is now on the object, but again, there was a transfer of energy.

So no, your friend is not correct.

3 0
2 years ago
A real heat engine operates between temperatures tc and th. during a certain time, an amount qc of heat is released to the cold
tino4ka555 [31]

q_{c} = Heat released to cold reservoir

q_{h} = Heat released to hot reservoir

W_{max} = maximum amount of work

t_{c} = temperature of cold reservoir

t_{h} = temperature of hot reservoir

we know that

\frac{q_{c}}{q_{h}}=\frac{t_{c}}{t_{h}}

q_{h} = (\frac{t_{h}}{t_{c}})q_{c}                                eq-1

maximum work is given as

W_{max} = q_{h} - q_{c}

using eq-1

W_{max} =  (\frac{t_{h}}{t_{c}})q_{c} - q_{c}



6 0
2 years ago
In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water d
Alexxandr [17]

Answer:

a) a = g / 3

b) x (3.0) = 14.7 m

c) m (3.0) = 29.4 g

Explanation:

Given:-

- The following differential equation for (x) the distance a rain drop has fallen has the form:

                             x*g = x * \frac{dv}{dt} + v^2

- Where,                v = Speed of the raindrop

- Proposed solution to given ODE:

                             v = a*t

Where,                  a = acceleration of raindrop

Find:-

(a) Using the proposed solution for v find the acceleration a.

(b) Find the distance the raindrop has fallen in t = 3.00 s.

(c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s.

Solution:-

- We know that acceleration (a) is the first derivative of velocity (v):

                             a = dv / dt   ... Eq 1

- Similarly, we know that velocity (v) is the first derivative of displacement (x):

                            v = dx / dt  , v = a*t ... proposed solution (Eq 2)

                             v .dt = dx = a*t . dt

- integrate both sides:

                             ∫a*t . dt = ∫dt

                             x = 0.5*a*t^2  ... Eq 3

- Substitute Eq1 , 2 , 3 into the given ODE:

                            0.5*a*t^2*g = 0.5*a^2 t^2 + a^2 t^2

                                                = 1.5 a^2 t^2

                            a = g / 3

- Using the acceleration of raindrop (a) and t = 3.00 second and plug into Eq 3:

                           x (t) = 0.5*a*t^2

                           x (t = 3.0) = 0.5*9.81*3^2 / 3

                           x (3.0) = 14.7 m  

- Using the relation of mass given, and k = 2.00 g/m, determine the mass of raindrop at time t = 3.0 s:

                           m (t) = k*x (t)

                           m (3.0) = 2.00*x(3.0)

                           m (3.0) = 2.00*14.7

                           m (3.0) = 29.4 g

6 0
2 years ago
A satellite that weighs 4900 N on the launchpad travels around the earth's equator in a circular orbit with a period of 1.667 h.
charle [14.2K]

Answer:

(a)F= 3.83 * 10^3 N

(b)Altitude=8.20 * 10^5 m

Explanation:

On the launchpad weight = gravitational force between earth and satellite.

W = GMm/R²

where R is the earth radius.

Re-arranging:

WR² / GM = m

m = 4900 * (6.3 * 10^6)² / (6.67 * 10^-11 * 5.97 * 10^24) = 488 kg

The centripetal force (Fc) needed to keep the satellite moving in a circular orbit of radius (r) is:

Fc = mω²r

where ω is the angular velocity in radians/second. The satellite completes 1 revolution, which is 2π radians, in 1.667 hours.

ω = 2π / (1.667 * 60 * 60) = 1.05 * 10^-3 rad/s

When the satellite is in orbit at a distance (r) from the CENTRE of the earth, Fc is provided by the gravitational force  between the earth and the satellite:

Fc = GMm/r²

mω²r = GMm / r²

ω²r = GM / r²

r³ = GM/ω² = (6.67 * 10^-11 * 5.97 * 10^24) / (1.05 * 10^-3)²  

r³ = 3.612 * 10^20

r = 7.12 * 10^6 m

(a) F = GMm/r²  

F=(6.67 * 10^-11 * 5.97 * 10^24 * 488) / (7.12 * 10^6 )²

F= 3.83 * 10^3 N

(b) Altitude = r - R = (7.12 * 10^6) - (6.3 * 10^6) = 8.20 * 10^5 m

4 0
2 years ago
Other questions:
  • What mass of water must evaporate from the skin of a 70.0 kg man to cool his body 1.00 ∘C? The heat of vaporization of water at
    9·1 answer
  • A child's toy is suspended from the ceiling by means of a string. The Earth pulls downward on the toy with its weight force of 8
    5·1 answer
  • In the 25-ft Space Simulator facility at NASA's Jet Propulsion Laboratory, a bank of overhead arc lamps can produce light of int
    12·1 answer
  • When the balloon hits the ground, it rebounds slightly. What is the source of the energy for this rebound? A. When the balloon h
    8·1 answer
  • A woman who weighs 500 N stands on an 8.0-m-long board that weighs 100 N. The board is supported at each end. The support force
    5·1 answer
  • The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0° above the horizo
    6·1 answer
  • A 5.0-kg rock and a 3.0 × 10−4-kg pebble are held near the surface of the earth.(a)Determine the magnitude of the gravitational
    15·2 answers
  • A student decides to spend spring break by driving 50 miles due east, then 50 miles 30 degrees south of east, then 50 miles 30 d
    5·1 answer
  • At one point in the rescue operation, breakdown vehicle A is exerting a force of 4000 N and breakdown vehicle B is exerting a fo
    14·1 answer
  • What is the work done by the 200.-N tension shown if it is used to drag the 150-N crate 25 m across the floor at a constant spee
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!