This problem can be solved based on the rule of energy conservation, as the energy of the photon covers both the energy needed to overcome the binding energy as well as the energy of ejection.
The rule can be written as follows:
energy of photon = binding energy + kinetic energy of ejectection
(hc) / lambda = E + 0.5 x m x v^2 where:
h is plank's constant = 6.63 x 10^-34 m^2 kg / s
c is the speed of light = 3 x 10^8 m/sec
lambda is the wavelength = 310 nm
E is the required binding energy
m is the mass of photon = 9.11 x 10^-31 kg
v is the velocity = 3.45 x 10^5 m/s
So, as you can see, all the parameters in the equation are given except for E. Substitute to get the required E as follows:
(6.63x10^-34x3x10^8)/(310x10^-9) = E + 0.5(9.11 x 10^-31)(3.45x10^5)^2
E = 6.41 x 10^-16 joule
To get the E in ev, just divide the value in joules by 1.6 x 10^-19
E = 4.009 ev
Answer:
720 J
Explanation:
The gravitational potential energy that Essam loses for every metre is given by:

where
m=72 kg is Essam's mass
is the gravitational field strength
is the difference in height
By substituting the numbers into the formula, we find

Answer:
Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.
Explanation:
Given:
Speed of sound in air = 320 m/s
Speed of sound in water = 1600 m/s
Time taken to reach certain distance in air = 2.5 sec
a.
We have to find the distance traveled by sound in air.
Distance = Product of speed and time.
⇒ 
⇒ 
⇒
meters.
b.
Now we have to find how much time the sound will take to travel in water.
⇒ Time = Ratio of distance and speed
⇒ 
⇒
<em> ...distance = 800 m and speed = 1600 m/s</em>
⇒ 
⇒
seconds.
Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.
Answer:
Explanation:What is the root-mean-square velocity (vrms) of the center of mass of one of the molecules?