Complete Question:
Check the circuit in the file attached to this solution
Answer:
Total current = 0.056 A(From left to right)
Explanation:
Let the current in loop 1 be I₁ and the current in loop 2 be I₂
Applying KVL to loop 1
30 - (I₁ - I₂)500 + I₂R + 15 = 0
45 - 500I₁ - 500I₂ + RI₂ = 0
I₁ = 30mA = 0.03 A
45 - 500(0.03) - 500I₂ + RI₂ = 0
30 -500I₂ + RI₂ = 0...............(1)
Applying kvl to loop 2
-RI₂ - 15 + 10 - 400I₁ = 0
-RI₂ = 5 + 400*0.03
RI₂ = -17 ................(2)
Put equation (2) into (1)
30 -500I₂ -17 = 0
-500I₂ = 13
I₂ = -13/500
I₂ = -0.026 A
The total current in the 500 ohms resistor = I₁ - I₂ = 0.03+0.026
Total current = 0.056 A
The current will flow from left to right
Answer:
a. The temperature of the copper changed more than the temperature of the water.
Explanation:
Because we're only considering the isolated system cube-water, the heat of the system should be constant, that implies the heat the cube loses is equal the heat the water gains (because by zero law of thermodynamics heat (Q) flows from hot body to cold body until reach thermal equilibrium and T1>T2). So:
(1)
But Q is related with mass (m), specific heat (c) and changes in temperature (
)in the next way:
(2)
Using (2) on (1):



Because we have an equality and 0.385 < 4.186 then
to conserve the equality
Answer:
It is a superordinate goal because both teams could have helped with the task.
Explanation:
If both teams pushed then they could have made it happened
The complete and comprehensive solution is attached.
Force = mass * acceleration
10 N - 2 N = 20 kg * acceleration
8 N = 20 kg * acceleration
8 / 20 = acceleration
2/5 m/s^2 = acceleration