answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nekit [7.7K]
2 years ago
14

You ride a roller coaster with a loop-the-loop. Compare the normal force that the seat exerts on you to the force that Earth exe

rts on you when you are passing the bottom of the loop. Express your answer in terms of R (radius of the loop), vb (speed at the bottom of the loop), and constant g. Nbottom/mg
Physics
1 answer:
timofeeve [1]2 years ago
4 0

Answer:

N = mg + \frac{mv^2}{R}

Explanation:

At the bottom of the loop, the normal force is opposite to my weight.

I am making a circular motion. So,

F_{net} = \frac{mv^2}{R}

The relationship between the normal force, my weight, my speed and the radius of the loop is

N - mg = \frac{mv^2}{R}\\mg = N - \frac{mv^2}{R}\\ N = mg + \frac{mv^2}{R}

Here, my weight (mg) is constant. But the normal force is inversely proportional to my speed.

If my speed is zero, the normal force would be maximum and equal to my weight. If my speed is to much, then the normal force would be equally high too.

You might be interested in
If a force of 26 N is exerted on two balls, one with a mass of 0.52 kg and the other with a mass of 0.78 kg, the ball with the m
gogolik [260]
False is the correct answer
6 0
2 years ago
Specific agricultural uses of water are all of the following except _____. evaporation growing crops raising livestock cleaning
Tamiku [17]
Evaporation.............
5 0
2 years ago
Read 2 more answers
A (1.25+A) kg bowling ball is hung on a (2.50+B) m long rope. It is then pulled back until the rope makes an angle of (12.0+C)o
daser333 [38]

Answer:

F = 0.535 N

Explanation:

Let's use the concepts of energy, at the highest and lowest point of the trajectory

Higher

   Em₀ = U = mg y

Lower

    Em_{f} = K = ½ m v²

    Emo =Em_{f}

    mg y = ½ m v2

    v = √ 2gy

   y = L - L cos θ

  v = √ (2g L (1-cos θ))

Now let's use Newton's second law n at the lowest point where the acceleration is centripetal

     F = ma

     a = v² / r

In turning radius is the cable length r = L

    F = m 2g (1-cos θ)

Let's calculate

    F = 2  1.25  9.8 (1 - cos 12)

    F = 0.535 N

   

7 0
2 years ago
The wheels of the locomotive push back on the tracks with a constant net force of 7.50 × 105 N, so the tracks push forward on th
Rasek [7]

Answer:

The freight train would take 542.265 second to increase the speed of the train from rest to 80.0 kilometers per hour.

Explanation:

Statement is incomplete. Complete description is presented below:

<em>A freight train has a mass of </em>1.83\times 10^{7}\,kg<em>. The wheels of the locomotive push back on the tracks with a constant net force of </em>7.50\times 10^{5}\,N<em>, so the tracks push forward on the locomotive with a force of the same magnitude. Ignore aerodynamics and friction on the other wheels of the train. How long, in seconds, would it take to increase the speed of the train from rest to 80.0 kilometers per hour?</em>

If locomotive have a constant net force (F), measured in newtons, then acceleration (a), measured in meters per square second, must be constant and can be found by the following expression:

a = \frac{F}{m} (1)

Where m is the mass of the freight train, measured in kilograms.

If we know that F = 7.50\times 10^{5}\,N and m = 1.83\times 10^{7}\,kg, then the acceleration experimented by the train is:

a = \frac{7.50\times 10^{5}\,N}{1.83\times 10^{7}\,kg}

a = 4.098\times 10^{-2}\,\frac{m}{s^{2}}

Now, the time taken to accelerate the freight train from rest (t), measured in seconds, is determined by the following formula:

t = \frac{v-v_{o}}{a} (2)

Where:

v - Final speed of the train, measured in meters per second.

v_{o} - Initial speed of the train, measured in meters per second.

If we know that a = 4.098\times 10^{-2}\,\frac{m}{s^{2}}, v_{o} = 0\,\frac{m}{s} and v = 22.222\,\frac{m}{s}, the time taken by the freight train is:

t = \frac{22.222\,\frac{m}{s}-0\,\frac{m}{s}  }{4.098\times 10^{-2}\,\frac{m}{s^{2}} }

t = 542.265\,s

The freight train would take 542.265 second to increase the speed of the train from rest to 80.0 kilometers per hour.

6 0
2 years ago
A wire with a length of 150 m and a radius of 0.15 mm carries a current with a uniform current density of 2.8 x 10^7A/m^2. The c
Mrac [35]

Answer:

The current is 2.0 A.

(A) is correct option.

Explanation:

Given that,

Length = 150 m

Radius = 0.15 mm

Current densityJ=2.8\times10^{7}\ A/m^2

We need to calculate the current

Using formula of current density

J = \dfrac{I}{A}

I=J\timesA

Where, J = current density

A = area

I = current

Put the value into the formula

I=2.8\times10^{7}\times\pi\times(0.15\times10^{-3})^2

I=1.97=2.0\ A

Hence, The current is 2.0 A.

7 0
2 years ago
Other questions:
  • Separating the electron from the proton in a hydrogen atom takes 2.18 ✕ 10−18 j of work. through what electric potential differe
    11·1 answer
  • Any ferrous metal object within or near the mri magnet has the potential of becoming a projectile. this is commonly referred to
    6·1 answer
  • What are close-toed shoes least likely to provide protection against?
    14·2 answers
  • How many conditions does the NEC list whereby conductors shall be considered to be outside of a building or other structure?
    5·1 answer
  • A mass is oscillating horizontally on a spring. At the locations A, B, C, D, and E, photogates are used to measure the speed of
    7·1 answer
  • If the soccer player runs with a speed of 4.6m/s, how long does it take him to run 60m?
    15·2 answers
  • when you drop a pebble from height h, it reaches the ground with kinetic energy k if there is no air resistance. from what heigh
    11·1 answer
  • evaluate the numerical value of the vertical velocity of the car at time t=0.25 s using the expression from part d, where y0=0.7
    10·1 answer
  • An ideal monatomic gas initially has a temperature of T and a pressure of p. It is to expand from volume V1 to volume V2. If the
    10·1 answer
  • At a drag race, a jet car travels 1/4 mile in 5.2 seconds. What is the final speed of the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!