Answer:
Option c → Tert-butanol
Explanation:
To solve this, you have to apply the concept of colligative property. In this case, freezing point depression.
The formula is:
ΔT = Kf . m . i
When we add particles of a certain solute, temperature of freezing of a solution will be lower thant the pure solvent.
i = Van't Hoff factor (ions particles that are dissolved in the solution)
At this case, the solute is nonvolatile, so i values 1.
ΔT = Difference between fussion T° of pure solvent - fussion T° of solution.
T° fussion paradichlorobenzene = 56 °C
T° fussion water = 0°
T° fussion tert-butanol = 25°
Water has the lowest fussion temperature and the paradichlorobenzene has the highest Kf. But the the terbutanol, has the highest Kf so this solvent will have the largest change in freezing point, when all the molalities are the same.
Answer:
The freezing point will be 
Explanation:
The depression in freezing point is a colligative property.
It is related to molality as:

Where
Kf= 
the molality is calculated as:




Depression in freezing point = 
The new freezing point = 
Answer:
Explanation:
1.)azeotrope is a mixture of two or more liquid components under constant boiling, it has a constant mole fraction composition of present component which can be homogeneous or heterogeneous.
2.)the condition which it's best performed when there's liquids that is non-volatile which boils higher than other liquids with at least 26 degrees .
steam azentropic distillation
3.During a steam distillation, How to know if the organic compound is still coming over is when you see the solution becoming cloudy or when there is existence of two layers.
4.)The end of the steam distillation, the receiving flask should contain two layers of liquid, and the chemical identity of these two liquids most contain
A.) Layers that are mostly water H2O
B.) Layers that are mostly products
5.)What is the purpose of adding 10% sodium carbonate solution to the distillate if it is acidic to litmus is to neutralize the distillate.
The formula for chromium (III) phosphate trihydrate is CrPO4- 3H20. This compound if in the anhydrous state, exists as a green crystal whereas a hydrated form violet crystal. The formula for cobalt(II) phosphate octahydrate is Co3(PO4)2•8H2O.
The answer is 2.135 mol/Kg
Given that molarity is 2M, that is, 2 moles in 1 liter of solution.
Density of solution is 1.127 g/ml
Volume of solution is 1L or 1000 ml
mass of solution (m) = density × volume
m₁ = density × volume = 1.127 × 1000 = 1127 g
mass of solute, m₂ = number of moles × molar mass
m₂ = 2 × 95.211
m₂ = 190.422 g
mass of solvent = m₁ - m₂
= 1127 - 190.422
= 936.578 g
= 0.9366 Kg
molality = number of moles of solute / mass of solvent (in kg)
= 2 / 0.9366
= 2.135 mol/Kg