Answer:
Option B is the correct answer.
Explanation:
Shear stress is the ratio of shear force to area.
We have
Shear stress = 3 N/mm² = 3 x 10⁶ N/m²
Area = Area of rectangle = 10 x 10⁻² x d = 0.1d
Shear force = 50000 N
Substituting

Width of beam = 16.67 cm
Option B is the correct answer.
Answer:
4.8967m
Explanation:
Given the following data;
M = 0.2kg
∆p = 0.58kgm/s
S(i) = 2.25m
Ratio h/w = 12/75
Firstly, we use conservation of momentum to find the velocity
Therefore, ∆p = MV
0.58kgm/s = 0.2V
V = 0.58/2
V = 2.9m/s
Then, we can use the conservation of energy to solve for maximum height the car can go
E(i) = E(f)
1/2mV² = mgh
Mass cancels out
1/2V² = gh
h = 1/2V²/g = V²/2g
h = (2.9)²/2(9.8)
h = 8.41/19.6 = 0.429m
Since we have gotten the heigh, the next thing is to solve for actual slant of the ramp and initial displacement using similar triangles.
h/w = 0.429/x
X = 0.429×75/12
X = 2.6815
Therefore, by Pythagoreans rule
S(ramp) = √2.68125²+0.429²
S(ramp) = 2.64671
Finally, S(t) = S(ramp) + S(i)
= 2.64671+2.25
= 4.8967m
<u>Answer</u>
27.7
<u>Explanation</u>
The ball was hit at an angle of 30°, with the horizontal at a speed of 10 m/s. We have to find the horizontal component of speed.
cosx = adjacent/hypotenuse
cos 30 = adjacent / 10
adjacent = 10 cos30
= 8.66 m/s ⇒ This is the horizontal speed.
Now find the horizontal distance.
Distance = speed × time
= 8.66 × 3.2
= 27.71
Answer to the nearest tenth = 27.7
Answer:
99.95%
Explanation:
A double pulsar system named PSR J0737-3039A/B in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.
A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.