Answer would be B. I provided work on an image attached. Message me if u have any other questions on how to do it
Answer:
Option c → Tert-butanol
Explanation:
To solve this, you have to apply the concept of colligative property. In this case, freezing point depression.
The formula is:
ΔT = Kf . m . i
When we add particles of a certain solute, temperature of freezing of a solution will be lower thant the pure solvent.
i = Van't Hoff factor (ions particles that are dissolved in the solution)
At this case, the solute is nonvolatile, so i values 1.
ΔT = Difference between fussion T° of pure solvent - fussion T° of solution.
T° fussion paradichlorobenzene = 56 °C
T° fussion water = 0°
T° fussion tert-butanol = 25°
Water has the lowest fussion temperature and the paradichlorobenzene has the highest Kf. But the the terbutanol, has the highest Kf so this solvent will have the largest change in freezing point, when all the molalities are the same.
Answer:

Explanation:
Given the moles, we are asked to find the mass of a sample.
We know that the molar mass of methanol is 32.0 grams per mole. We can use this number as a fraction or ratio.

Multiply by the given number of moles, which is 2.0

The moles of methanol will cancel each other out.

The denominator of 1 can be ignored.

Multiply.

There are 64 grams of methanol in the sample.
Answer:
6.7 x 10²⁶molecules
Explanation:
Given parameters
Mass of CO₂ = 4.9kg = 4900g
Unknown:
Number of molecules = ?
Solution:
To find the number of molecules, we need to find the number of moles first.
Number of moles = 
Molar mass of CO₂ = 12 + 2(16) = 44g/mol
Number of moles =
= 111.36mole
A mole of substance is the quantity of substance that contains the avogadro's number of particles.
1 mole = 6.02 x 10²³molecules
111.36 moles = 111.36 x 6.02 x 10²³molecules = 6.7 x 10²⁶molecules
Answer:
lignands, the central atom/metal ion
Explanation: