Answer: Change in ball's momentum is 1.5 kg-m/s.
Explanation: It is given that,
Mass of the ball, m = 0.15 kg
Speed before the impact, u = 6.5 m/s
Speed after the impact, v = -3.5 m/s (as it will rebound)
We need to find the change in the magnitude of the ball's momentum. It is given by :
So, the change in the ball's momentum is 1.5 kg-m/s. Hence, this is the required solution.
Read more on Brainly.com - brainly.com/question/12946012#readmore
Answer:

Explanation:
Outside the sphere's surface, the electric field has the same expression of that produced by a single point charge located at the centre of the sphere.
Therefore, the magnitude of the electric field ar r = 5.0 cm from the sphere is:

where
is the Coulomb's constant
is the charge on the sphere
is the radius of the sphere
is the distance from the surface of the sphere
Substituting, we find

Answer:
The correct answer to the following question will be Option A (moment arm; pivot point).
Explanation:
- The moment arm seems to be the duration seen between joint as well as the force section trying to act mostly on the joint. Each joint that is already implicated in the workout seems to have a momentary arm.
- The moment arm extends this same distance from either the pivot point to just the position of that same pressure exerted.
- The pivotal point seems to be the technical indicators required to fully measure the appropriate demand trends alongside different time-frames.
The other three choices are not related to the given situation. So that option A is the appropriate choice.
Answer:
3×10^7 m/s or 0.10c (e)
Explanation: If the actual value of the speed of light were to be put into consideration.
Given that the speed of light is c = 3.0×10^8m/s
The alien spaceship is approaching at the rate of 10% of the speed of light.
10% of 3.0×10^8m/s
10/100 × 3.0×10^8m/s
0.1 ×3.0×10^8m/s
3×10^7 m/s. Which is the same thing as 0.1 of c = 0.1×c
Answer : The correct option is, (d) 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of copper = 
= specific heat of water = 
= mass of copper = 120 g
= mass of water = 300 g
= final temperature of mixture = 
= initial temperature of copper = ?
= initial temperature of water =
Now put all the given values in the above formula, we get:


Therefore, the temperature of the kiln was, 