Answer:
The amount of gas that is to be released in the first second in other to attain an acceleration of 27.0 m/s2 is

Explanation:
From the question we are told that
The mass of the rocket is m = 6300 kg
The velocity at gas is being ejected is u = 2000 m/s
The initial acceleration desired is 
The time taken for the gas to be ejected is t = 1 s
Generally this desired acceleration is mathematically represented as

Here
is the rate at which gas is being ejected with respect to time
Substituting values

=> 
=> 
=> 
=> 
Answer:
The following equation can be used.
(32°F − 32) × 5/9=C
To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.
Newton's second law is defined as

Where,
m = mass
a = acceleration
From this equation we can figure the acceleration out, then



From the cinematic equations of motion we know that

Where,
Final velocity
Initial velocity
a = acceleration
x = displacement
There is not Final velocity and the acceleration is equal to the gravity, then





From the equation of motion where acceleration is equal to the velocity in function of time we have




Therefore the time required is 0.0705s
Answer:
M = 0.730*m
V = 0.663*v
Explanation:
Data Given:

Conservation of Momentum:

Energy Balance:

Substitute Eq 2 into Eq 1

Using Eq 1
