Answer:
So No of slices to be consumed by each person = n = 65
Explanation:
Energy released by one slice = E1

h = 8850 m ; m = 79 kg ,η= 10.5%
We know that potential energy given as
u = m g h
u = 79 x 9.81 x 8850

we know from the defination of efficiency that, η= E(out)/E(in)
Now amount of PE has to be compensated, In our case, E(out) =u



Let n be the number of bread slices to be consumed.
n = E(in)/E1

n=64.76
So No of slices to be consumed by each person = n = 65
Answer:
B. Trial 2
Explanation:
Trial 2, because the student’s finger applied the largest force to the sensor.
Because the trial 2 student finger applied to largest force.
D:the electrons from being attracted to the grid instead of the anode
Heat flows irreversibly from hot to cold
<span>As seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.
Let's assume that both Barbara and Neil start out at coordinate (0,0) and skate for exactly 1 second. Where do they end up?
Barbara is going due south at 5.9 m/s, so she's at (0,-5.9)
Neil is going due west at 1.4 m/s, so he's at (-1.4,0)
Now to see Neil's relative motion to Barbara, compute a translation that will place Barbara back at (0,0) and apply that same translation to Neil. Adding (0,5.9) to their coordinates will do this.
So the translated coordinates for Neil is now (-1.4, 5.9) and Barbara is at (0,0).
The magnitude of Neil's velocity as seen by Barbara is
sqrt((-1.4)^2 + 5.9^2) = sqrt(1.96 + 34.81) = sqrt(36.77) = 6.1 m/s
The angle of his vector relative to due west will be
atan(5.9/1.4) = atan(4.214285714) = 76.7 degrees
So as seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.</span>