20m away
the dog was 60m away from. you subtract 40m since it is 10m/s x 4 seconds
Answer:
3.62 m and - 1.4 m
Explanation:
Consider a location towards the positive side of x-axis beyond the location of charge Q₂
x = distance of the location from charge Q₂
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = 1.62 m
So location is 2 + 1.62 = 3.62 m
Consider a location towards the negative side of x-axis beyond the location of charge Q₁
x = distance of the location from charge Q₁
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = - 1.4 m
:<span> </span><span>30.50 km/h = 30.50^3 m / 3600s = 8.47 m/s
At the top of the circle the centripetal force (mv²/R) comes from the car's weight (mg)
So, the net downward force from the car (Fn) = (weight - centripetal force) .. and by reaction this is the upward force provided by the road ..
Fn = mg - mv²/R
Fn = m(g - v²/R) .. .. 1800kg (9.80 - 8.47²/20.20) .. .. .. ►Fn = 11 247 N (upwards)
(b)
When the car's speed is such that all the weight is needed for the centripetal force .. then the net downward force (Fn), and the reaction from the road, becomes zero.
ie .. mg = mv²/R .. .. v² = Rg .. .. 20.20m x 9.80 = 198.0(m/s)²
►v = √198 = 14.0 m/s</span>