Answer:
B ) Ascend using my buddy alternative air source / make an emergency Ascent
Explanation:
From the description it can be seen his buddy is close by of which he can easily use the alternative air source. Also we can see that he is closer to the water surface than his buddy, of which controlled emergency swimming ascent is highly favourable in this condition.
Answer:
0
Explanation:
Assuming your graph and question match the attachment, the average speed is 0. The bug ends up where it started, so its displacement is zero.
average speed = displacement/time = 0/(8 s)
average speed = 0
Answer: 9938.8 km
Explanation:
1 pound-force = 4.48 N
30.0 pounds-force = 134.4 N
The force of gravitation between Earth and object on the surface of is given by:

Where M is the mass of the Earth, m is the mass of the object, R (6371 km) is the radius of the Earth.
At height, h above the surface of the Earth, the weight of the object:

we need to find "h"
taking the ratio of two:

Hence, Pete would weigh 30 pounds at 9938.8 km above the surface of the Earth.
Answer:
0.08m/s
Explanation:
Given data
M1= 69kg
v1= 2.61m/s
M2= 0.22kg
v2= 25.2m/s
Before snowball is thrown:
Total mass of skater + snowball = 69+ 0.22 = 69.22kg
Total Momentum of skater + snowball = mv = 69.22 x 2.61 = 180.7 kgm/s
After snowball is thrown:
Let's call the velocity of the skater V.
Total momentum = momentum of skater + momentum of snowball
=69.22V + (5.544)
= 69.22V + 5.544
So:
180.7 = 69.22V+5.544
180.7- 5.544= 69.22V
175.156= 69.22V
V= 175.156/69.22
V = 2.53m/s
The total momentum after catching the snowball is mV or:
(69.0 + 0.22) x V
So:
5.544= 69.22V
V= 5.544/69.22
V=0.08m/s
The velocity of the ice skater after throwing the snowball is 0.08m/s
Por definicion tenemos que
(F/A) = E(∆/0)
Sustituyendo los valores tenemos y despejando ∆:
∆ = (F/(πr2 × E))*0
(5000×5)/(3.14×(34×10^−2)^2×(125×10^8))
5.5×10^−6 m