Answer:
0.0847M is molarity of sodium hydrogen citrate in the solution
Explanation:
The 2.0%(w/v) solution of sodium hydrogen citrate contains 2g of the solute in 100mL of solution. To find the molarity of the solution we need to convert the mass of solute to moles using molar mass and the mL of solution to Liters because molarity is the ratio between moles of sodium hydrogen citrate and liters of solution.
<em>Moles Na2C6H6O7:</em>
<em>Molar Mass:</em>
2Na: 2*22.99g/mol: 45.98g/mol
6C: 6*12.01g/mol: 72.01g/mol
6H: 6*1.008g/mol: 6.048g/mol
7O: 7*16g/mol: 112g/mol
45.98g/mol + 72.01g/mol + 6.048g/mol + 112g/mol = 236.038g/mol
Moles of 2g:
2g * (1mol / 236.038g) = <em>8.473x10⁻³ moles</em>
<em />
<em>Liters solution:</em>
100mL * (1L / 1000mL) = <em>0.100L</em>
<em>Molarity:</em>
8.473x10⁻³ moles / 0.100L =
<h3>0.0847M is molarity of sodium hydrogen citrate in the solution</h3>
Answer:
The answer to be filled in the respective blanks in question is
3 and 1
Explanation:
So, we know that the formation of cabon-dioxide mole and that of Adenosin-Tri-Phosphate (ATP) moles will be in the ratio of 3:1 i.e., three carbon-di-oxide moles and 1 ATP mole.
Therefore, we can say that one pyruvate mole when passed through citric acid cycle and pyruvate dehydrogenase yields carbon-di-oxide and ATP moles in the ratio 3:1
Answer:
100 cg/1g
Step-by-step explanation:
1 cg = 0.01 g Multiply by 100
100 cg = 1 g
(a) is <em>wrong</em>. The correct conversion factor is 1000 cm³/1 L.
(b) is <em>wrong</em>. The correct conversion factor is 1000 mL/1 L.
(c) is <em>wrong</em>. The correct conversion factor is 1 m/10 dm.
Answer:
Ionization energy
Electronegativity
Explanation:
-due to its smaller ionic radius....the electron in the outter most shell tends to expierence a stronger nuclear attraction...which makes it harder to remove the electron from the sodium atom
-Rubidium has lesser ionization energy because its (i) affected by its larger ionic radius which tends to lessen the nuclear attraction ...hence making it easier to remove the electron...(ii)and also by the screening effect done by the inner shells, which also tends to lessen the nuclear attraction.
Sodium has a higher electronegativity than rubidium;
Electronegativity is the charge density of electrons in an atom...in which its high when the atomic radius is smaller...
So hence due to the sodium atomic radius being smaller...it tends to have a higher charge density than rubidium....which then gives it a higher electronegativity value
Limiting reactant : O₂
Mass of N₂O₄ produced = 95.83 g
<h3>Further explanation</h3>
Given
50g nitrous oxide
50g oxygen
Reaction
2N20 + 302 - 2N204
Required
Limiting reactant
mass of N204 produced
Solution
mol N₂O :

mol O₂ :

2N₂O+3O₂⇒ 2N₂O₄
ICE method
1.136 1.5625
1.0416 1.5625 1.0416
0.0944 0 1.0416
Limiting reactant : Oxygen-O₂
Mass N₂O₄(MW=92 g/mol) :
