Answer:
Mitochondria are abundantly present in mammalian cells. Their fraction varies from tissue to tissue, ranging from <1% (volume) in white blood cells to 35% in heart muscle cells. However, mitochondria should not be thought of as single entities, but rather a dynamic network that continuously undergoes fission and fusion processes. In skeletal muscle, mitochondria exist as a reticular membrane network. The subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria are located in distinct subcellular regions, and they possess subtle differences in biochemical and functional properties that are characterized by their anatomical locations. SS mitochondria lie directly beneath the sarcolemmal membrane and the IMF mitochondria are located in close contact with the myofibril. Their different properties are likely to influence their capacity for adaptation. SS mitochondria account for 10-15% of the mitochondrial volume and this population has been shown to be more susceptible to adaptation than the IMF mitochondria. However, the IMF mitochondria were found to have higher rates of protein synthesises, enzyme activities and respiration (1).
Explanation:
(29.8 g) / [0.184 mol (44.00964 g CO2/mol)] =0.832= 83.2% yield CO2
(hope this helps)
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C
Answer:
The information that can be used to determine which mixture has the higher proportion of KCl IS INFORMATION ABOUT THE MASS OF CHLORINE IN EACH MIXTURE, THIS INFORMATION CAN BE OBTAINED BY USING THE LAW OF DEFINITE PROPORTION.
Explanation:
The law of definite proportion states that the chemical composition by mass of a chemical compound is always constant. For instance, a chemical compound that is made up of two elements will always contain the same proportions of the constituent elements regardless of the quantity of chemical that was used.
Using the law of definite proportion, we can determine the proportion of sodium and chlorine in NaCl and the proportion of potassium and chlorine in KCl if the mass of chlorine that was used is known. Based on the results obtained, one can easily determine the mixtures that has higher proportion of KCl.
When the titration of HCN with NaOH is:
HCN (aq) + OH- (aq) → CN-(aq) + H2O(l)
So we can see that the molar ratio between HCN: OH-: CN- is 1:1 :1
we need to get number of mmol of HCN = molarity * volume
= 0.2 mmol / mL* 10 mL = 2 mmol
so the number of mmol of NaOH = 2 mmol according to the molar ratio
so, the volume of NaOH = moles/molarity
= 2 mmol / 0.0998mL
= 20 mL
and according to the molar ratio so, moles of CN- = 2 mmol
∴the molarity of CN- = moles / total volume
= 2 mmol / (10mL + 20mL ) = 0.0662 M
when we have the value of PKa = 9.31 and we need to get Pkb
so, Pkb= 14 - Pka
= 14 - 9.31 = 4.69
when Pkb = -㏒Kb
4.69 = -㏒ Kb
∴ Kb = 2 x 10^-5
and when the dissociation reaction of CN- is:
CN-(aq) + H2O(l) ↔ HCN(aq) + OH- (aq)
by using the ICE table:
∴ the initials concentration are:
[CN-] = 0.0662 M
and [HCN] = [OH]- = 0 M
and the equilibrium concentrations are:
[CN-] = (0.0662- X)
[HCN] = [OH-]= X
when Kb expression = [HCN][OH-] /[CN-]
by substitution:
2 x 10^-5 = X^2 / (0.0662 - X)
X = 0.00114
∴[OH-] = X = 0.00114
when POH = -㏒[OH]
= -㏒ 0.00114
POH = 2.94
∴PH = 14 - 2.94 = 11.06