answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ierofanga [76]
2 years ago
6

A car has a mass of 1600 kg. It is stuck in the snow and is being pulled out by a cable that applies a force of 7560 N due north

. The resistance of the snow and mud also applies a force to the car, which has a magnitude of 7340 N and points due south. What is the acceleration of the car?
Physics
1 answer:
sergiy2304 [10]2 years ago
7 0

Answer:

Acceleration of the car will be a=0.1375m/sec^2

Explanation:

We have given mass of the ball m = 1600 kg

Force in north direction F= 7560 N

Resistance force which opposes the movement of car F_R=7340N

So net force on the car F_{net}=F-F_R=7560-7340=220N

According to second law of motion we know that F=ma

So 220=1600\times a

a=0.1375m/sec^2

You might be interested in
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
2 years ago
in physics lab, a cube slides down a frictionless incline as shown in the figure below, and elastically strikes another cube at
Tema [17]
<span>In the physics lab, a cube slides down a frictionless incline as shown in the figure below, check the image for the complete solution:

</span>

3 0
1 year ago
Emmy kicks a soccer ball up at an angle of 45° over a level field. She watches the ball's trajectory and notices that it lands,
Elenna [48]

Let u be the initial velocity of the soccer ball at an angle of inclination of \theta_0 with the positive x-axis.

Given that:

\theta_0=45^{\circ}

The horizontal distance covered by the projectile=20 m

Time of flight, t_f=2 seconds

Acceleration due to gravity, g= 10 m/s^2 downward.

As "north" and "up" as the positive x ‑ and y ‑directions, respectively.

So, g= -10 m/s^2

As the acceleration due to gravity is in the vertical direction, so the horizontal component of the initial velocity remains unchanged.

The x-component of the initial velocity, u_x=u\cos\theta_0.

The horizontal distance covered by the projectile = u_x\times t_f

\Rightarrow u_x\times t_f=20

\Rightarrow u_x\times 2=20

\Rightarrow u_x=10 m/s

So, the horizontal component of the velocity is 10 m/s which is constant and the graph has been shown in the figure (i).

Now,  u\cos(45^{\circ})=10 [as u_x=u\cos\theta_0]

\Rightarrow u=10\sqrt{2} m/s.

The vertical component of the initial velocity,

u_y= u\sin\theta_0

\Rightarrow u_y=10\sqrt{2}\sin(45^{\circ})

\Rightarrow u_y=10 m/s

Let v be the vertical component of the velocity at any time instant t.

From the equation of motion,

v=u+at

where u: initial velocity, v: final velocity, a: constant acceleration, and t: time taken to change the velocity from u to v.

In this case, we have u=u_y, a= -10 m/s^2.

So at any time instant, t.

v=u_y+(-10)t

\Rightarrow v=10-10t

The vertical component of the velocity, v, is the function of time and related as v=10-10t.

This is a linear equation.

At 2 second, the vertical component of the velocity

v=10-10x2=-10 m/s.

The graph has been shown in figure (ii).

7 0
2 years ago
When Marcel finds the distance L from the previous part, it turns out to be greater than Lend, the distance from the pivot to th
Llana [10]

Answer:

Fx = - (1/h)( wL2 + wL3 - wLend )

Explanation:

Assuming The twins Gilles and Jean has a weight ( w ) each

The torque that would balance the equation would be = wL2 + wL3 -------- 1

THEREFORE the ccw torques are = wLend + Fh ----------- 2

hence equation 2 equals equation 1

= wLend + Fh = wL2 + wL3 --------- 3

equation 3 can as well be represented as

F = ( 1/h) ( wL2 + wL3 - wLend )---------- 4

From equation 4 it can be seen that F is on the left hand side therefore the value of Fx is negative

therefore equation 4 is represented as

 Fx = - (1/h)( wL2 + wL3 - wLend )

3 0
2 years ago
The power rating of an electric lawn mower is 2000 watts if lawnmower is used for 120 seconds how many joules of work van it do
Scorpion4ik [409]
1 watt = 1 joule/sec

2,000 watts = 2,000 joules/sec

                     (2,000 joule/sec) x (120 sec)

                  = (2,000 x 120)  (joule-sec/sec)

                  =   240,000 joules .
        
4 0
1 year ago
Other questions:
  • Write a hypothesis about how the force applied to a cart affects the acceleration of the cart. Use the "if . . . then . . .becau
    11·2 answers
  • On a snowy day, max (mass = 15 kg) pulls his little sister maya in a sled (combined mass = 20 kg) through the slippery snow. max
    15·1 answer
  • A rigid tank whose volume is unknown is divided into two parts by a partition. One side of the tank contains an ideal gas at 935
    12·1 answer
  • Given that the CFL bulb is rated at 10% efficiency, if the LED bulb consumes half the amount of electrical power, for the same a
    12·1 answer
  • Hawks and gannets soar above the ground and, when they spot prey, they fold their wings and essentially drop like a stone. They
    5·1 answer
  • A 0.450 kg soccer ball has a kinetic energy of 119 J.
    12·1 answer
  • As an object in motion becomes heavier, its kinetic energy _____. A. increases exponentially B. decreases exponentially C. incre
    13·2 answers
  • Armand is monitoring a large sealed tank by way of a sensor that records the liquid level over time on a graph. He looks at the
    12·2 answers
  • If a force of 26 N is exerted on two balls, one with a mass of 0.52 kg and the other with a mass of 0.78 kg, the ball with the m
    7·1 answer
  • An empty glass beaker has a mass of 103 g. When filled with water, it has a total mass of 361g.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!