Helium atom, in other words, it consistis of a particle having four protons and two neutrons.
Answer:

Explanation:
Let 'F₁' and 'F₂' be the forces applied by left and right wires on the bar as shown in the diagram below.
Now, the horizontal and vertical components of these forces are:

As the system is in equilibrium, the net force in x and y directions is 0 and net torque about any point is also 0. Therefore,

Now, let us find the net torque about a point 'P' that is just above the center of mass at the upper edge of the bar.
At point 'P', there are no torques exerted by the F₁x and F₂x nor the weight of the bar as they all lie along the axis of rotation.
Therefore, the net torque by the forces
will be zero. This gives,

But, 
Therefore,


We know,

∴
Answer:

Explanation:
The electric flux through the rectangle is given by

where
E is the electric field strength
A is the area of the rectange
is the angle between the direction of the electric field and of the vector normal to the plane of the rectangle
In this problem we have
E = 125 000 N/C
The area of the rectangle is

and the angle is

so, the electric flux is

Answer:
Change in potential energy of the block-spring-Earth
system between Figure 1 and Figure 2 = 1 Nm.
Explanation:
Here, spring constant, k = 50 N/m.
given block comes down eventually 0.2 m below.
here, g = 10 m/s.
let block be at a height h above the ground in figure 1.
⇒In figure 2,
potential energy of the block-spring-Earth
system = m×g×(h - 0.2) + 1/2× k × x². where, x = change in spring length.
⇒ Change in potential energy of the block-spring-Earth
system between Figure 1 and Figure 2 = (m×g×(h - 0.2)) - (1/2× k × x²)
= (1×10×0.2) - (1/2×50×0.2×0.2) = 1 Nm.